BIOFILM PREVENTION BY SURFACE ACOUSTIC NANOWAVES: A NEW APPROACH TO URINARY TRACT INFECTIONS?

Uwe Ikinger, Simon Zillich, Christian Weber
Dept. of Urology, Salem Medical School, University of Heidelberg, Heidelberg, Germany

INTRODUCTION AND OBJECTIVE

Catheter associated urinary tract infection (CAUTI) is a major cause of morbidity and mortality in hospitalized patients. The longer the catheter remains in place, the greater the tendency of certain organisms to develop biofilms, resulting in CAUTI’s and antibiotic resistance. (Fig 1) We used a new device that is clipped onto the urinary catheter and that is designed to prevent biofilm by creating low-energy acoustic nanowaves on the inner and outer surfaces of the indwelling urinary catheter (UroShield™, NanoVibronix Inc., Cedarhurst, N.Y.) (Figs 2 & 3). After performing in-vitro and animal studies, we undertook the first clinical study of UroShield.

RESULTS

SEM analysis of the catheters revealed that there was no biofilm formation in the group of patients, which were treated with UroShield, compared to the sham-group in which 7 catheters had biofilm (See Table 2). No statistical significance was found with respect to bacteriuria. The UroShield proved to be safe and well tolerated with no difference in reported adverse events between the 2 groups.

CONCLUSIONS

After performing successful animal studies, the first clinical study showed that biofilm formation can be prevented or delayed by applying low energy nanowaves along the surfaces of an indwelling catheter. This approach opens new options for prevention and/or non-antibiotic treatment of urinary tract infections. In addition, UroShield is being studied in the area of enhanced in-vitro penetration of antibiotics into the biofilm structure. There is also ongoing research on the ability of UroShield to reduce pain and discomfort associated with indwelling urinary catheters.